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Introduction

e How individual behavior affected by illness and
stress.

e Epidemiologists currently do not have such
sensing or modeling tools.

e Solution: Use mobile phone based co-location
and communication sensing to predict the health
status of an individual



Related Work

e Mobile Phones as Social Sensors
Bluetooth proximity, call data records, cellular identifiers...
Web based and survey based data source.

e Link between physical Symptoms, behavior changes
and stress

In medical literature, substantial evidence has been found
for an association between stress and illness behavior.



Methodology

e Participants: 70 residents of an undergraduate
residence hall.

e Time period: 2 months, from February to April.
e Devices: Windows Mobile 6.x devices

e Dataset source:

Social interaction data from mobile phones: call data,
SMS logs, Bluetooth co-location sensing and WLAN-
based location sensing.

Daily-self reported survey.



Methodology

e User privacy consideration

e Proximity detection(Bluetooth)

e Approximate Location(802.11 WLAN)

e Communication(call and SMS records)

e Daily Survey launcher(Daily Symptom Survey)
e Battery Impact



[
o
L
[
. .
Analysis :
® Behavior effect with different intensity Symptomes.
_I
& J_ i R T
’ ] } ]
= o (a) Late (b) Late
night early night
(a) Total com- (b) Late- morn- morning
munication night early ing calls Bluetooth
increases ##:# morning and SMS counts and
COMMU- decrease ** entropy
S decrease*
nication
increases **
R- n » f- :
B A g = ] =
E : (© WLAN @) WLAN
. . based en- Entropy
tropy  with with respect
(¢c) Owverall (d) Total respect  to I\%LAE;JUE?}&HSI
: university s
B]llf‘ﬁ.‘tooth WLAN APs WLAN “APs decmases
entropy detected decreases
decreases * increase *#
Figure 1. Behavior effects of runny nose, congestion, sneezing symp- Figure 3. Behavior effects of fever, n=36/2283, *: p < 0.05 **: p < 0.01

tom, n=587/2283, #: p < 0.05 #: p < 0,01 ¥5%: p < 0.001 ¥*¥: p < 0.001



Analysis (cont’d)

e Behavior effects of stress and mental health Symptoms
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Symptom Classification °

e Symptom Classification Using behavior feature

e K-nearest-neighbor clustering
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Symptom Classification (Cont’d)

e Bayesian-network classifier
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Temporal Flux

e Temporal Flux between Behavior, Stress and

Physical Symptoms
e The phase Slope Index method
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Temporal Flux (Cont’d)

e The 12 largest PSI coeffients across both methods
on the basis of a combined ranking scores.

Table 2. PSI Results ordered by combined scores overall bluetooth entropy
Source Follower v
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Conclusion

e The study shows that it is possible to determine
the health status of individual using information
gathered by mobile phones alone, without having
actual health measurements.



Future work

e Repeated-measures approach

e Take external events into consideration, e.g final
exams

e Battery consumption.
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